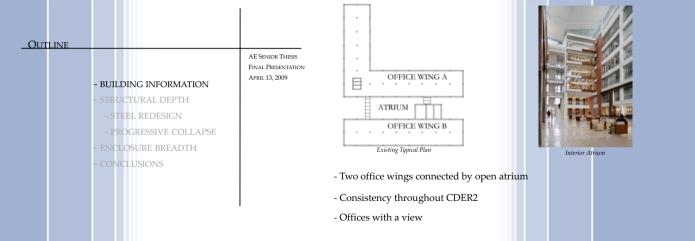
FOOD AND DRUG ADMINISTRATION
CENTER FOR DRUG EVALUATION AND RESEARCH
OFFICE BUILDING 2

AE SENIOR THESIS

COMPOSED BY:

Michael O'Mara Spear structural option

ADVISOR:


M. Kevin Parfitt

FINAL PRESENTATION APRIL 13, 2009

OUTLINE		
		AE SENIOR THESIS
		FINAL PRESENTATION
	- BUILDING INFORMATION	APRIL 13, 2009
	- STRUCTURAL DEPTH	
	- STEEL REDESIGN	
	- PROGRESSIVE COLLAPSE	
	- ENCLOSURE BREADTH	
	- CONCLUSIONS	

OUTLINE AE SENIOR THESIS FINAL PRESENTATION APRIL 13, 2009 - BUILDING INFORMATION - Center for Drug Evaluation - STRUCTURAL DEPTH and Research (CDER) - 6-Story research office - PROGRESSIVE COLLAPSE building - ENCLOSURE BREADTH - Located in White Oak, MD Site Location and Campus

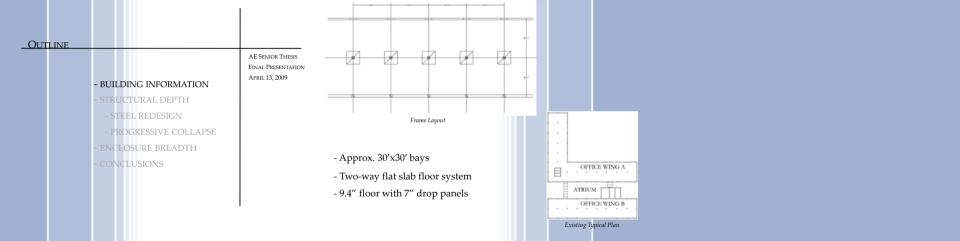
OUTLINE

- BUILDING INFORMATION

- STRUCTURAL DEPTH
- STEEL REDESIGN
- PROGRESSIVE COLLAPSE
- ENCLOSURE BREADTH

- CONCLUSIONS

AE SENIOR THESIS FINAL PRESENTATION APRIL 13, 2009



CDER2 Elevation

- -Office wings employ brick façade w/ punch windows
- -Accent aluminum panel and mullion system
- Atrium glass curtain wall

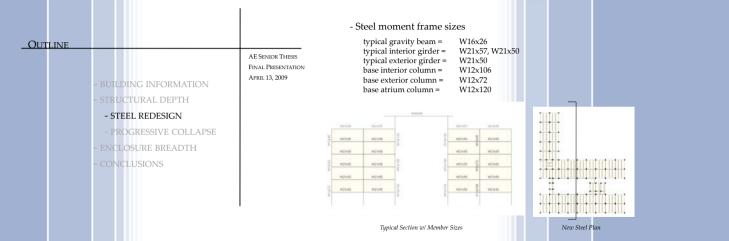
Interior Atri

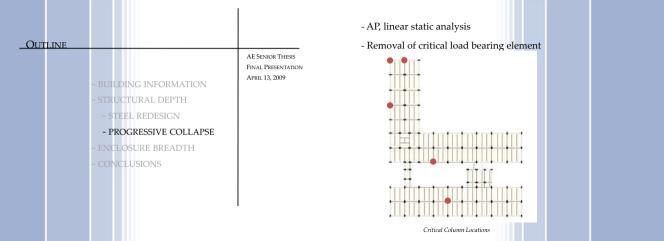
OUTLINE AE SENIOR THESIS FINAL PRESENTATION For my thesis... APRIL 13, 2009 - BUILDING INFORMATION -Alternate structural steel framing - STRUCTURAL DEPTH system explored - STEEL REDESIGN -Progressive collapse concerns considered - PROGRESSIVE COLLAPSE - ENCLOSURE BREADTH

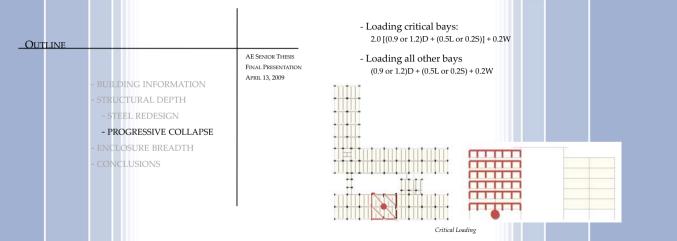
	Loads:			
	Office:	SDL = 20psf (mechanical, ceiling, access floor) LL = 80psf		
AE SENIOR THESIS FINAL PRESENTATION APRIL 13, 2009	Public/Egress:	SDL = 20psf (mechanical, ceiling, access floor) LL = 100psf SDL = 42psf (mechanical, ceiling, roofing, insulation, paver) LL = 32psf		
	Load Comb	inations		
	Load Combinations:			
	3) $1.2D + 1.6(Lr$	+ 1.6H		
	FINAL PRESENTATION	Office: AE SENIOR THESIS FINAL PRESENTATION APRIL 13, 2009 Roof: Load Comb 1) 1.4(D+F) 2) 1.2(D+F+T 3) 1.2D+1.6(L 4) 1.2D+1.6W 5) 1.2D+1.6W 6) 0.9D+1.6W		

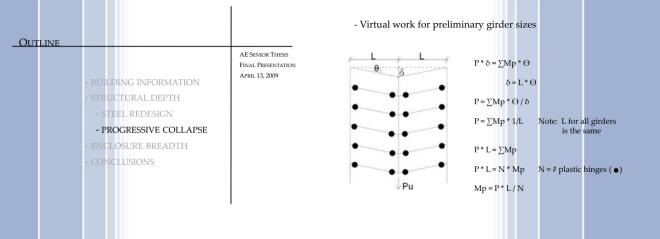
OUTLINE - BUILDING INFORMATION - STRUCTURAL DEPTH - STEEL REDESIGN - PROGRESSIVE COLLAPSE - ENCLOSURE BREADTH

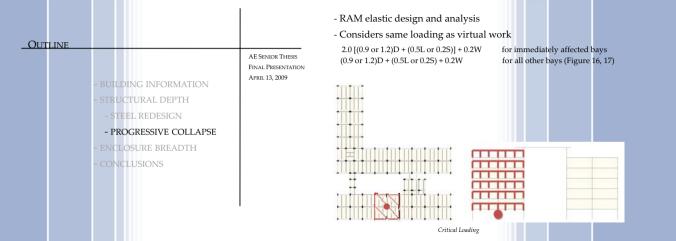
- Steel moment frame system utilized - Beams gravity only (blue)
 - Girders + Columns makeup the frames
- 30'x30' bay size remained

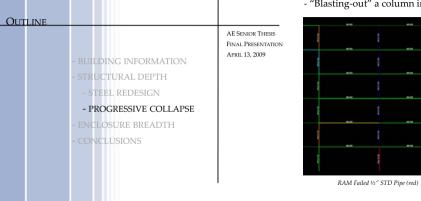

AE SENIOR THESIS FINAL PRESENTATION

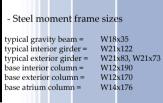

APRIL 13, 2009



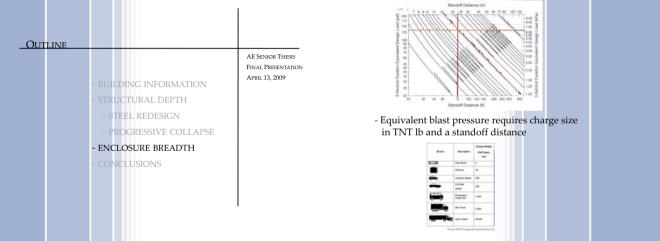

Typical Frame Layout

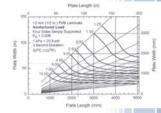


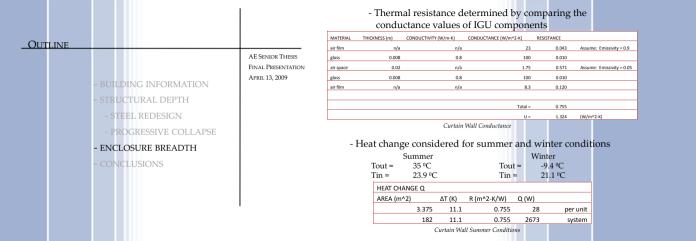




OUTLINE		- Strong column, weak bea ΣΜpc / ΣΜpb > 1.0	am requirement
- BUILDING INFORMATION	AE SENIOR THESIS FINAL PRESENTATION APRIL 13, 2009	$\sum Mpc = \sum Zc (Fy - 1)$ $\sum Mpb = \sum (1.1 \text{ Ry } F)$	
- STRUCTURAL DEPTH			
- STEEL REDESIGN - PROGRESSIVE COLLAPSE		- Moment frame sizes base	ed on virtual work
- ENCLOSURE BREADTH - CONCLUSIONS		typical interior girder = V typical exterior girder = V base interior column = V base exterior column = V	W18x35 W21x83 W21x57, W21x62 W14x233 W14x233, W14x159 W14x233




- "Blasting-out" a column in RAM = a very small pipe


OUTLINE		 Structure designed to minimize injuries to the occupants, not the building itself
- BUILDING INFORMATION	AE SENIOR THESIS FINAL PRESENTATION APRIL 13, 2009	- Following the same thinking, other building systems should also be considered
- STRUCTURAL DEPTH		- ASTM F 2248-03
- STEEL REDESIGN		- Provides procedure to determine equivalent
- PROGRESSIVE COLLAPSE		3-second blast pressure
- ENCLOSURE BREADTH		- ASTM E 1300-04
- CONCLUSIONS		- Provides procedure to determine glass load resistance
		- Both lites laminated, no "sacrificial lite"
	ı	

OUTLINE AE SENIOR THESIS FINAL PRESENTATION APRIL 13, 2009 STRUCTURAL DEPTH - PROGRESSIVE COLLAPSE - ENCLOSURE BREADTH

- Various charts for thicknesses and glass type
- Enter chart with opening dimensions
- Final designs:
- Atrium = (2) 3/16" heat strengthened, laminated insulating glass unit
- Afrium = (2) 3/16 heat strengthened, laminated insulating glass unit

JTLINE	AE SENIOR THESIS	steel moment frame system provides an efficient option
- BUILDING INFORMATION	FINAL PRESENTATION APRIL 13, 2009	 At this point, the only progressive collapse design which can be safely recommended is the RAM elastic design.
- STRUCTURAL DEPTH - STEEL REDESIGN - PROGRESSIVE COLLAPSE		- However, this method is extremely conservative and is an inefficient design. As a result, I recommend the current concrete system or more plastic analysis of the
- ENCLOSURE BREADTH		proposed steel system.
- CONCLUSIONS		- For increased occupant safety, I recommend the employment of the laminated blast safety glass

- BUILDING INFORMATION - STRUCTURAL DEPTH - STEEL REDESIGN	AE SENIOR THESIS FINAL PRESENTATION APRIL 13, 2009	- MAE Discussion AE 597a - use of RAM Structural System - virtual work for girder estimation AE 534 - discussion of progressive collapse - discussion of blast resistant glass
- PROGRESSIVE COLLAPSE - ENCLOSURE BREADTH - CONCLUSIONS		AE 534 - design of blast resistant glass - heat transfer analysis

		- Acknowledgements
_OUTLINE		I would like to thank the following firms, professionals, professors, and individuals for their support throughout the year with this thesis:
	AE SENIOR THESIS FINAL PRESENTATION APRIL 13, 2009	RTKL Associates Inc.
- BUILDING INFORMATION		Mr. Peter Malmquist
- STRUCTURAL DEPTH		Prof. M. Kevin Parfitt Prof. Robert Holland
- STEEL REDESIGN		Dr. Louis Geschwinder
- PROGRESSIVE COLLAPSE		All AE structural faculty
- ENCLOSURE BREADTH		Thank you to all of my AE friends who were always willing to help and answer questions, and kept me laughing through the process.
- CONCLUSIONS		
		To my roommates, thank you for being patient with me throughout the entire year.
		And to my family, thank you so much for always being there to support me.

